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Abstract

Geodesic active contours and graph cuts are two stan-
dard image segmentation techniques. We introduce a new
segmentation method combining some of their benefits. Our
main intuition is that any cut on a graph embedded in some
continuous space can be interpreted as a contour (in 2D)
or a surface (in 3D). We show how to build a grid graph
and set its edge weights so that the cost of cuts is arbitrar-
ily close to the length (area) of the corresponding contours
(surfaces) for any anisotropic Riemannian metric.

There are two interesting consequences of this techni-
cal result. First, graph cut algorithms can be used to find
globally minimum geodesic contours (minimal surfaces in
3D) under arbitrary Riemannian metric for a given set of
boundary conditions. Second, we show how to minimize
metrication artifacts in existing graph-cut based methods
in vision. Theoretically speaking, our work provides an in-
teresting link between several branches of mathematics -
differential geometry, integral geometry, and combinatorial
optimization. The main technical problem is solved using
Cauchy-Crofton formula from integral geometry.

1. Introduction

Our work unifies two standard image segmentation tech-
niques: geodesic active contours and graph cuts. Each
of these approaches has its own benefits and drawbacks.
Geodesic active contours [6, 29] are based on a continuous
formulation (computing geodesics in Riemannian spaces),
and produce minimal geometric artifacts. Standard vari-
ational techniques for computing geodesic contours (e.g.
the level set method) generate local minima of the energy
which may be sensitive to initialization. Highly desirable
anisotropic formulations tend to be slower due to increased
computational burden.

One attractive feature of the graph cut approach is that
it can find a global minimum of the energy (e.g. [13, 28,
15, 2]). On the other hand, discrete topology of graphs

may produce noticeable geometric artifacts known as met-
rication errors. For example, 2D grid graphs with a simple
4-neighborhood system impose “Manhattan distance” (L1)
metric on the underlying image space. This may create vi-
sual artifacts as L1 is not invariant to image rotations and
does not treat different directions in the image equally.

In this paper we introduce a notion ofcut metric on
graphs. In fact, cut metrics are (informally speaking) “dual”
to well known path-based metrics on graphs. We study ge-
ometric properties of cut metrics in case of regular grids.
Using powerful Crofton-style formulas from integral geom-
etry we solve the following open problem: how to construct
a graph where cut metric approximates any given Rieman-
nian metric with arbitrary precision. Previously, it was not
even clear if such a construction was possible.

Our results allow to combine ideas from differential ge-
ometry and combinatorial optimization. In particular, we
propose ageocutsalgorithm for image segmentation. Simi-
lar to the geodesic active contours technique, we formulate
the problem as finding geodesics (in 2D) or minimal sur-
faces (in 3D). Unlike the level-set method, we use graph
cuts to computeglobalgeodesics for a given set of boundary
conditions. Potentially, this could reduce sensitivity toini-
tialization. Anisotropic metrics present no additional com-
putational cost for our algorithm. Similar to level-set meth-
ods, geocuts method is “topologically” free.

The structure of the paper is as follows. Related material
from differential geometry, integral geometry, and combina-
torial optimization is reviewed in Section 2. The concept of
cut metrics is discussed in Section 2.4. In Sections 3 and 4
we show how to build graphs whose cut metric approximate
any given continuous Riemannian metric. Geocut algorithm
and experimental results are presented in Section 5.

2. Related work and background

2.1. Differential geometry and active contours

Active contours is an interesting application of Differ-
ential Geometry [5] in computer vision. Since the intro-
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duction of ”snakes” [16], active contour models have been
widely used for image segmentation. Original snakes rep-
resented contour models as a parametric mappingC(v) =
(x(v), y(v)) for v ∈ [0, 1]. The energy of the model is

E(C) =

∫ 1

0

α|Cv(v)|2 + β|Cvv(v)|2 − |∇I(C(v))|dv

whereCv andCvv are the first and second derivatives ofC
with respect to contour parameterv, andI : R2 → R+ is
a given image in which we want to detect the object bound-
aries. Such energies can be minimized via gradient descent
leading to a sequence of moving (“active”) contours. De-
tails for parametric active contours can be found in [14].

A noticeable development was the introduction of an im-
plicit representation for active contours as level-sets ofan
auxiliary function [25, 21]. Unlike most of the snake based
methods, this allows topological changes of the curve.

Another important step was the ”geodesic active con-
tour” model [6, 29]. The two terms in the energy corre-
sponding to internal and external forces were combined into
a single term. Their curve evolution is a result of minimiz-
ing the functional

E(C) =

∫ |C|E

0

g(|∇I(C(s))|) ds

where parameters is specifically chosen as the (Euclidean)
arc length on the contour,|C|E is the Euclidean length of
contour, andg is a strictly decreasing function converging
to zero at infinity. It was shown that in many cases this
method behaves better than its ancestors.

The formulation of [6, 29] can be viewed as a problem of
finding local geodesicsin a space with Riemannian metric
computed from the image. Note that the (non-Euclidean)
length of a contour in a given Riemannian space is

|C|R =

∫ |C|E

0

√

τT
s ·D(C(s)) · τs ds

where a positive definite matrixD(·) specifies the local Rie-
mannian metric at a given point/pixel in the image andτs is
a unit tangent vector to the contour. In fact, the contour en-
ergyE(C) above is equal to|C|R in case of an isotropic
Riemannian metric

D(·) = diag(g(|∇I(·)|)).

Like in most of the previous approaches, the algorithm
in [6, 29] searches for some local minimum which is close
to the initial guess. Numerical optimization is performed
via level-sets. The same approach can be used for 3D seg-
mentation viaminimal surfaces(see [7] for details). Fur-
ther generalizations of geodesic active contours and some
anisotropic metrics are discussed in [17]. Regional proper-
ties of geodesic active contours are considered in [22].

Cohen et. al. [8] developed an algorithm for computing
minimal geodesics, i.e. the global minimum of the same en-
ergy. Their approach is based on minimal paths and shares
some similarities with the Dijkstra shortest-path algorithm.
Connections between level-set methods and Dijkstra’s algo-
rithm are well known (e.g. see [25]).

2.2. Integral geometry and Crofton formulas

The name of Integral Geometry was introduced by
Blaschke in [1]. The basic ideas have their origin in the
theory of Geometric Probabilities. In fact, by using con-
cepts of probability M. W. Crofton was the first to obtain
some remarkable integral formulas of a purely geometrical
character. These formulas can be considered as one of the
starting points of Integral Geometry.

Below we review one classical Cauchy-Crofton formula
that is crucial for the theory of graph cut geometry devel-
oped in this paper. This formula relates a length of a curve
in R2 to a measure of a set of lines intersecting it. We will
introduce basic terminology and discuss some facts that are
important for the consequent development of the material in
this paper. More details about Crofton formula and Integral
Geometry in general can be found in [24, 5].

Consider a straight lineL(ρ, φ) in the planeR2 deter-
mined by itsnormalparametersρ andφ as shown on Fig-
ure 1. First, we will describe a reasonable way of assigning
a measure to a given subset of straight lines. Consider a set
L = {(ρ, φ) : ρ ≥ 0, φ ∈ [0, 2π]} describing all straight
lines L (see Figure 2) and Lebesgue measure on this set
defined by its densitydL ∝ dρ · dφ. Lebesgue measure
of a subset of straight linesX ⊂ L is given by the inte-
gral

∫

X
dL. Note that any rigid motionM on the planeR2

transforms a subset of linesX into another subsetXM. In
fact [24, 5], Lebesgue measure is the only measure onL that
is invariant under rigid motions so that

∫

X
dL =

∫

XM dL.
The following Cauchy-Crofton formula establishes a

connection between Euclidean length|C|E of a curveC in
R2 and a measure of a set of lines intersecting it.

∫

nc dL = 2 |C|E (1)

Functionnc(L) specifies a number of times any given line
L intersectsC (see Figure 2). In fact, Cauchy-Crofton for-
mula (1) holds for any rectifiable curve [1]1. If contourC
is convex then (1) reduces to

∫

LC
dL = |C|E whereLC is

a subset of lines intersectingC. That is, length of a convex
contour equals Lebesgue measure of the set of lines inter-
secting it. This is one of the most simple and elegant exam-
ples of a Crofton-style formula in Integral Geometry.

1Moreover, (1) can be used to generalize the concept of lengthto a
continuum of points [11]. It is important that the integral in (1) be in the
Lebesgue sense rather than in the Riemann sense.
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Figure 1. Normal parameters of a straight line
L in R2. The parameters ρ ≥ 0 and 0 ≤ φ ≤ 2π
are the polar coordinates of the foot of the
perpendicular from the origin onto the line.
Points (x, y) on L satisfy x cosφ+ y sinφ = ρ.
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(a) Lines inR2.
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(b) Lines as points inL.

Figure 2. Any line L on R2 in (a) has a unique
pair of normal parameters (ρ, φ). That is, lines
L can be represented as points of the set
L = {(ρ, φ) : ρ ≥ 0, φ ∈ [0, 2π]} shown in (b).
Note that any given contour C in (a) defines
a function nc on L that specifies a number of
intersections with C. Different shades in (b)
represent subsets of lines L where nc(L) = 0,
nc(L) = 2, and nc(L) = 4.

(a) Image with seeds. (d) Segmentation results.

⇓ ⇑

⇒

(b) Graph. (c) Cut.

Figure 3. A simple 2D segmentation exam-
ple for a 3 × 3 image. Boundary conditions
are given by object seeds O = {v} and back-
ground seeds B = {p} provided by the user.
The cost of each edge is reflected by the
edge’s thickness. Minimum cost cut is at-
tracted to cheap edges.

2.3. Graph cut methods in vision

Graph cuts have been used for many early vision prob-
lems like stereo [23, 4, 18], segmentation [28, 26, 27, 2],
image restoration [13, 4], texture synthesis [19], and many
others. Below we briefly overview garph-based segmenta-
tion method in [2], which works as a foundation for our
geocuts technique in Section 5.1. Also, we introduce some
necessary terminology from combinatorial optimization.

An undirected graphG = 〈V , E〉 is defined as a set of
nodes (verticesV) and a set of undirected edges (E) that
connect these nodes. An example of a graph is shown in
Figure 3(b). Each edgee ∈ E in the graph is assigned a
nonnegative weight (cost)we. There are also two special
nodes called terminals. A cut is a subset of edgesC ⊂ E
such that the terminals become separated on the induced
graphG(C) = 〈V , E\C〉. Each cut has a cost which is
defined as the sum of the costs of the edges that it severs

|C| =
∑

e∈C

we.

A globally minimum cut on a graph with two terminals can
be computed efficiently in low-order polynomial time via
standard max-flow or push-relable algorithms from combi-
natorial optimization (e.g. [9]).
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Graph cut formalism is well suited for segmentation
of images. In fact, it is completely appropriate for N-
dimensional volumes. The nodes of the graph can represent
pixels (or voxels) and the edges can represent any neigh-
borhood relationship between the pixels. A cut partitions
the nodes in the graph. As illustrated in Figure 3 (c-d), this
partitioning corresponds to a segmentation of an underlying
image or volume. A minimum cost cut generates a segmen-
tation that is optimal in terms of properties that are built into
the edge weights.

2.4. “Cut metrics” vs. “path metrics”

Below we introduce a new concept of acut metricon
graphs. For better motivation, we will first discuss a related
notion of apath metricwhich is more standard for graphs.

Consider a weighted graphG = 〈V,E〉. “Length” can
be naturally defined for any pathpAB ⊂ E connecting two
nodesA,B ∈ V as the sum of edge weights along the path

|pAB| =
∑

e∈pAB

we

The distance, or the shortest path, between any two nodes
can be computed via Dijkstra algorithm (e.g. see [9]). Such
distances correspond to apath metric2 on the graph.

Path metrics are relevant in many computer vision appli-
cations (e.g. [12, 8]) based on Dijkstra-style optimization.
A choice of the neighborhood system (graph topology) and
edge weights determine a graph’s path metric. This may
significantly affect the quality of results. In fact, the size of
the neighborhood system is important. For example, con-
sider path metric distance maps3 for simple 2D grid-graphs
with 4, 8, and 128 neighborhood systems in Figure 4. The
quality of segmentation results of Dijkstra based methods
can suffer from “blockiness” (like in Figures 8(b)(e)) in case
of “Manhattan” style metric in Figure 4(a). The path met-
rics in (b) and (c) are much closer to the Euclidean metric.
In general, the segmentation results will be smoother if Di-
jkstra based method use larger neighborhood system.

In this paper we introducecut metricson graphs which,
in some sense, are complimentary or “dual” topath metrics.
The major advantage of cut-based methods (see Section 2.3)
over Dijkstra based segmentation techniques is that they are
not limited to contours (1D paths) and can find globally op-
timal (minimal) hyper-surfaces in N-D cases. This signifi-
cantly broadens the scope of useful applications.

The main intuition comes from an observation that a cut
on a grid-graphG = 〈V,E〉 embedded inRn can be seen

2Despite popularity of the Dijkstra algorithm in computer science, the
actual term “path metric” is not very common. However, it is used explic-
itly in the theory of Finite Metric Spaces [10, 20] that, in particular, studies
embeddability of graphs in normed spaces.

3Personal communications with Marie-Pierre Jolly.

(a) 4 n-system (b) 8 n-system (c) 128 n-system

Figure 4. Distance maps for path metrics on
grid-graphs with different size neighborhood
systems. In each case, weights of edges
are equal to their Euclidean length. The
contours represent nodes equidistant from a
given center.

as a closed contours (inR2) or as a closed surfaces (inRn).
“Length”, or “area” in N-D, can be naturally defined for any
cutC ⊂ V as

|C|G =
∑

e∈C

we (2)

which is simply the standard definition of cut cost from
combinatorial optimization. Due to geometric interpreta-
tion of |C|G as the “length” or “area” of the correspond-
ing contour or surfaceC, we can talk about metric proper-
ties of cuts on graphs. We will use the termcut metric4 in
the context of geometric properties of graph cuts (as hyper-
surfaces) implied by the definition 2.

Similarly to path metric, all properties of cut metric on
a graph are determined by the graph’s neighborhood sys-
tem and by edge weights. In fact, larger neighborhood sys-
tems allow both cut and path metrics to approximate con-
tinuous metrics. In the example of Figure 4 path metric
approximates continuous Euclidean distances when weights
of edges are equal to their Euclidean length. In fact, cut met-
ric on a 2D grid-graph can obtain the same distance maps as
in Figure 4 but the corresponding edge weights are differ-
ent. Equation (4) in Section 3 shows that weights of edges
should be inversely proportional to their Euclidean length.

3. Euclidean Cut Metric on 2D grids

In this section we show how to build a 2D grid graph
whose cut metric approximates Euclidean metric. In prac-
tice we are much more interested in approximating Rieman-
nian metrics. In this section we use Euclidean metric as a
simple example to introduce all the key ideas. In Section 4
we generalize them to Riemannian case.

4There should be no confusion with a termcut semi-metricused in
[10, 20] for a very specific inter-node distances assigned depending on one
specific fixed cut. We use the word “cut” generically. Ourcut metricon a
graph does not depend on one fixed cut.
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Figure 5. Examples of neighborhoods in 2D.
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(a) 8-neighborhood 2D grid (b) One family of lines

Figure 6. A regular grid.

3.1. Regular 2D Grids

In this section we discuss the structure and basic termi-
nology for 2D grid graphs. We assume that all nodes are
embedded inR2 in a regular grid-like fashion with cells of
size δ. We also assume that all nodes have topologically
identical neighborhood systems. Some examples of possi-
ble neighborhood systems are shown in Figure 5. The ex-
ample in Figure 6 (a) shows a regular grid when all nodes
have identical 8-neighborhood systems as in Figure 5 (b).

Neighborhood systems of a regular gridG can be de-
scribed by a setNG = {ek : 1 ≤ k ≤ nG} of dis-
tinct (undirected5) vectors. For example, grids with an 8
neighborhood system is described by a set of four vectors
NG = {e1, e2, e3, e4} shown in Figure 5 (b). We will as-
sume that vectorsek are enumerated in the increasing order
of their angular orientationφk so that0 = φ1 < φ2 <
... < φnG

< π. For convenience, we assume thatek is
the shortest length vector connecting two grid nodes in the
given directionφk.

As shown in Figure 6 (b), each vectore ∈ NG gener-
ates a family ofedge-lineson the corresponding grid. It is
easy to check that the distance between the nearest lines in
a family generated byek is

∆ρk =
δ2

|ek|

5We do not differentiate betweene and−e

whereδ is the cell-size of the grid and|ek| is the (Euclidean)
length of vectorek. Each family of edge lines is character-
ized by the inter-line distance∆ρk and by its angular ori-
entationφk. We will also use angular differences between
the nearest families of edge lines∆φ1 = φ2 − φ1, ∆φ2 =
φ3 − φ2, . . . ,∆φnG

= π − φnG−1.
So far we discussed only topological structure of the

grid. Another important aspect of any graph are edge
weights. We will use the following notation. If we set equal
weights for all edges in the same family of lines, that is
for all edges with orientationφk, then we usewk to denote
these common weight. For example, this will be the case
when we want to approximate Euclidean or any other spa-
tially homogeneous metricD(·) = const. In a more general
case we will usewφ(p) for a weight of a (directed) edge that
originates at nodep and has orientationφ.

EXAMPLE 1 As a simple illustration we would like to show
that cut metric on a regular 2D grid implicitly assigns cer-
tain “length” to curves. For simplicity, consider a segment
of a straight linea shown in Figure 6 (b). This segment can
be considered as a part of some cut that severs edges on the
grid. We can compute the cost of severed edges as follows.

For a kth family of edge lines on the grid we can easily
count the number of intersections witha as

|a|k =
|a| · | sinϕ|

∆ρk
=

|a× ek|

δ2

Summing over all families of edge-lines we get from (2)

|a|G =
1

δ2
·

nG
∑

k=1

wk · |a× ek| (3)

assuming constant edge weightswk within the same family.
This equation holds for a vectora with an arbitrary orien-
tation. Thus, we can use (3) to visualize 2D distance maps.
In particular, this equation gives distance maps identicalto
those in Figure 4 if edge weightswk are appropriately cho-
sen to approximate Euclidean metric (see formula 4).

3.2. Graph cuts and Cauchy-Crofton formula

In this section we will use integral geometry to estab-
lish a necessary technical link between the concepts of (dis-
crete) cut metric on a grid (in combinatorial optimization)
and (continuous) Euclidean metric onR2 (in differential ge-
ometry). Consider a contourC in the same 2D space where
grid graphG is embedded (as in Figure 6(a)). ContourC
gives a binary partitioning of graph modes and therefore
corresponds to a cut onG. Then we can consider the length
|C|G of the contour imposed by the graph’s cut metric (2).
Below we derive edge weights onG so that the cut based
length|C|G is close to the Euclidean length|C|E . We will
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also discuss our convergence result as the topologyNG and
the grid sizeδ get finer and finer.

First, we will assume that graph’s topologyNG is fixed.
According to Cauchy-Crofton formula (1) we can represent
the Euclidean length ofC as an integral over the set of all
straight linesL(ρ, φ) in L

|C|E =
1

2

∫

nc dL =
1

2

∫ π

0

∫ +∞

−∞

nc(ρ, φ) dρ dφ

where radiusρ is allowed to be negative while angleφ is re-
stricted to the interval[0, π]. Remember, functionnc speci-
fies how many times lineL(ρ, φ) intersects contourC. By
choosing an appropriate partitioning of the set[0, π]×Rwe
can approximate the integral above by its partial sum

|C|E ≈
1

2

nG
∑

k=1

(

∑

i

nc(i, k)∆ρk

)

∆φk =

=

nG
∑

k=1

nc(k) ·
δ2 · ∆φk

2 · |ek|

where indexi enumerates lines in thekth family of edge-
lines,nc(i, k) counts intersections of linei in thekth family
with contourC, andnc(k) =

∑

i nc(i, k) is the total num-
ber of intersections ofC with thekth family of edge-lines.

If we choose constant edge weights within each family
of edge lines as

wk =
δ2 · ∆φk

2 · |ek|
(4)

then we have

|C|E ≈

nG
∑

k=1

nc(k) · wk ≈ |C|G

The approximation error on the left hand side is due to
the difference between an integral and its partial sum. As
we make partitioning finer this error of approximation con-
verges to zero. In our case partitioning size is determined
by the grid sizeδ and bysupk |∆φk|.

The approximation on the right hand side is due to the
fact that the number of intersections between the contour
and an edge-line might be different from the actual number
of edges along this line that are severed by the cut corre-
sponding to the contour. Examples of this phenomenon can
be found in Figure 6(a) in places where some contour wig-
gles are comparable with the size of edges|ek|. This source
of error converges to zero as|ek| gets smaller. We can prove
the following convergence theorem (the proof is omitted).

Theorem 1 (Pointwise Convergence) IfC is a continuously
differentiable regular curve inR2 intersecting each straight
line a finite number of times then

|C|G → |C|E

asδ, supk |∆φk|, andsupk |ek| get to zero.

4. Riemannian Metrics in 2D and in 3D

The results in the previous section generalize to non-
Euclidean metric spaces. In this section we show how to set
edge weights on a grid so that its cut metric approximates a
given continuous Riemannian metric. We follow the same
basic steps as in Section 3.2 for a simpler case of Euclidean
metric. Due to space limitations we skip the proofs.

First we consider a 2D Riemannian space with a constant
metricD(·) = const. We use the following Crofton-style
formula for Riemannian length|C|R of contourC

∫

detD

2(u T
L ·D · uL)3/2

nc dL = 2 |C|R

whereuL is the unit vector in the direction of the lineL.
This formula holds for any continuously differentiable reg-
ular curveC in R2 and can be derived as an exercise in
Integral Geometry [24].

Following the same approach as in the previous section,
we obtain an expression for edge weights for a 2D grid

wk =
δ2 · |ek|2 · ∆φk · detD

2 · (e T
k ·D · ek)3/2

(5)

in case of a constant Riemannian metricD(·) = const.
Note that equation (5) reduces to (4) if we plug in the iden-
tity matrixD = I corresponding to Euclidean metric.

Now we consider a more general 2D Riemannian space
where metric (tensor)D(p) continuously varies over points
p in space. In this case we need to construct a directed
graph. The expression for weights is very similar to (5)

wk(p) =
δ2 · |ek|2 · ∆φk · detD(p)

2 · (e T
k ·D(p) · ek)3/2

(6)

The difference is that edge weights now depend not only on
edge’s orientationk but also on node/pixelp where this (di-
rected) edge originates. Note also that two opposite edges
originating in the same node/pixelp and having orientations
φk andπ + φk are assigned the same weightwk(p).

Finally, we state our results for a regular 3D grid graphs
embedded in a 3D Riemannian space with metricD(p).
Each edge angular orientation is now determined by spheri-
cal anglesΦk = {ψk, ϕk}. Using Cauchy-Crofton formula
for the area of surfaces in 3D Riemannian spaces we obtain
the following edge weights:

wk(p) =
δ3 · |ek|

3 · ∆Φk · detD(p)

π · (e T
k ·D(p) · ek)2

(7)

where ∆Φk = ∆ψk · ∆ϕk correspond to a given par-
titioning of the unit sphere among angular orientations
Φ1, Φ2, . . . ,ΦnG

of edges in the neighborhood system.



www.manaraa.com

Proceedings of “Internation Conference on Computer Vision” (ICCV), Nice, France, November 2003 vol.I, p.32

(a) Liver, 144x170x170 (b) Lung, 253x165x205

Figure 7. Globally minimal surfaces for
image-based Riemannian metrics (geocuts).

5. Experimental Results

Cauchy-Crofton formulas from integral geometry were
the key instruments for obtaining our technical results in
Sections 3.2 and 4. These results establish an interesting
link between two branches of mathematics: combinatorial
optimization and differential geometry. In this section we
show that both disciplines can benefit from this link. In fact,
graph cuts can be used in differential geometry as a numer-
ical method to compute globally optimal minimal surfaces
in N-D Riemannian spaces for a given set of boundary con-
ditions (Section 5.1). On the other hand, better approxima-
tion of continuous metrics can help many existing graph-cut
based techniques in vision to reduce their metrication arti-
facts (Section 5.2).

5.1. “Geocuts” algorithm

Geocuts algorithm is a combination of the theoretical re-
sults in Section 4 with the graph-cut segmentation method
in [2]. Equation 7 tells how to set edge weights so that the
cost of graph cuts approximates Riemannian length/area of
the corresponding contours/surfaces. [2] explains how to
impose hard constraints (boundary conditions) on a graph.
The globally optimal cut on the corresponding grid can be
computed in close to linear time via a number of basics/t
graph cut methods from combinatorial optimization.

In Figure 7 we show a couple of examples of globally
optimal minimal surfaces that we obtained using geocuts.
In both cases we used the following boundary conditions.
The “background” seeds were automatically set at voxels
at the very border of the volume. The “object” seeds were
manually placed in a single slice in the center of the ob-
ject of interest. Then we applied a “max-flow” algorithm
from [3] which (in one pass) finds a globally minimal sur-
face (cut) among all surfaces that separate the “object” and

(a) Original data (b) 4 n-system (c) 8 n-system
image restoration experiments on 2D data

(d) Original data (e) 6 n-system (f) 26 n-system
object extraction experiments on 3D data

Figure 8. Reducing metrication artifacts.

“background” seeds. The running time for the examples in
Figure 7 varies from 10 to 60 seconds on a 1.4GHz Pentium
IV PC depending on the neighborhood size (up to 26).

In the experiments of Figure 7 we used an anisotropic
Riemannian metric (induced from imageI)

D(p) = g(|∇I|) · I + (1 − g(|∇I|)) · u · uT

whereu = ∇I
|∇I| is a unit vector in the direction of image

gradient at pointp andI is the identity matrix. We used
scalar functiong(x) = exp(− x2

2σ2 ). Note that in the coordi-
nate system aligned with image gradient (s.t.u = (1, 0, 0))
metricD(p) is represented by the diagonal matrix

D(p) = diag ( 1, g(|∇I|), g(|∇I|) )

It is known that anisotropic methods have advantages
over isotropic techniques. At the same time, standard
anisotropic diffusion techniques are typically slower than
isotropic methods. Note that geocuts algorithm deals
equally efficiently with isotropic or anisotropic metricsD.

5.2. Reducing metrication errors

Many standard graph-cut based methods (see Sec-
tion 2.3) use energy functions that include a term penalizing
segmentation discontinuities. Our results allow such terms
to represent geometrically justified length/area of segments
boundaries. This could significantly reduce metrication er-
rors. Figure 8(b) shows such errors in the context of image
restoration via graph cut technique in [4] (Potts model) us-
ing standard 4-neighborhood system. In (c) we show the
results of the same algorithm when Potts model interaction
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penalties were set from Euclidean cut metric weights in (4)
using 8-neighborhoods. Similarly, Figure 8(e) shows met-
rication artifacts generated by a graph-cut based object ex-
traction method in [2]. The results in (e) are for a simple
6-neighborhood system. The results in Figure 8(f) use 26-
neighborhoods with geometrically justifies weights in (7).

In fact, the idea of using bigger neighborhoods is not
new in the context of Dijkstra based methods on graphs.
In the context of graph cuts, however, it was not clear how
to set weights for different types of edges. Our theoretical
results remove this problem. Formulas (4,7) explain how to
set edge weights to obtain desired geometric properties for
regular neighborhoods of any size and configuration.
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